The VegBank Data Model

VegBank consists of three integrated databases

- 1. The Plot Database
- 2. The Plant Database
- 3. The Community Database

Taxonomic database challenge: *Standardizing organisms and communities*

The problem: Integration of data potentially representing <u>different times</u>, <u>places</u>, <u>investigators</u> and <u>taxonomic standards</u>.

The traditional solution: A standard checklists of organisms.

Standard checklists for Taxa

Representative examples for higher plants in NorthAmerica / USUSDA PlantsITIShttp://plants.usda.govNatureServeBONAPFlora North Americahttp://hua.huh.harvard.edu/FNA/

These are intended to be checklists wherein the taxa recognized perfectly partition all plants. The lists can be dynamic.

Most taxon checklists <u>fail</u> to allow effective dataset integration

The reasons include:

- The user cannot reconstruct the database as viewed at an arbitrary time in the past,
- Taxonomic concepts are not defined (just lists),
- Multiple party perspectives on taxonomic concepts and names cannot be supported or reconciled.

Multiple concepts of *Rhynchospora plumosa s.l.*

Taxonomic theory

A taxon concept represents a unique combination of a *name* and a *reference*

"Taxon concept" roughly equivalent to "Potential taxon" & "assertion"

A *usage* represents an association of a *concept* with a *name*.

- Usage does not appear in the IOPI model, but instead is a special case of concept
- Usage can be used to apply multiple name systems to a concept
- Desirable for stability in recognized concepts

Three concepts of shagbark hickory

Splitting one species into two illustrates the ambiguity often associated with scientific names.

sec. Gleason 1952

sec. Radford et al. 1968

Six shagbark hickory concepts

Possible synonyms are listed together

Names

Carya ovata Carya carolinae-septentrionalis Carya ovata v. ovata Carya ovata v. australis

References

Gleason 1952. Britton & Brown Radford et al. 1968. Flora Carolinas Stone 1997. Flora North America <u>Concepts</u> (One shagbark) *C. ovata sec* Gleason '52 *C. ovata sec* FNA '97

(Southern shagbark) *C. carolinae-s. sec* Radford '68 *C. ovata* v. *australis sec* FNA '97

(Northern shagbark) *C. ovata sec* Radford '68 *C. ovata* (v. *ovata*) *sec* FNA '97

Data relationships VegBank taxonomic data model

Single party, dynamic perspective

Party Perspective

The Party Perspective on a concept includes:

- Status Standard, Nonstandard, Undetermined
- Correlation with other concepts Equal, Greater, Lesser, Overlap, Undetermined.
- Lineage Predecessor and Successor concepts.
- Start & Stop dates for tracking changes

Application of Party Perspective

Party

ITIS FNA Committee NatureServe

Concept

Carya ovata sec Gleason 1952 Carya ovata sec FNA 1997 Carya ovata sec Radford 1968 Carya carolinae sec Radford 1968 Carya ovata (ovata) sec FNA 1997 Carya ovata australis sec FNA 1997

Status and usage

Party	Concept	Status	Start	Usage:SciName
ITIS	ovata –G52	NS	1996	
ITIS	ovata –R68	St	1996	C. ovata
ITIS	carolinae-s –R68	St	1996	C. carolinae-sept.
ITIS	carolinae-s –R68	NS	2000	
ITIS	ovata aust –FNA	St	2000	C. carolinae-sept.
ITIS	ovata – R68	NS	2000	
ITIS	ovata ovata –FNA	A St	2000	C. ovata

Data relationships VegBank taxonomic data model

Multiple parties, dynamic perspectives

Data relationships VegBank taxonomic data model

Intended functionality

- Organisms are labeled by reference to concept (name-reference combination),
- Party perspectives on concepts and names can be dynamic, but remain perfectly archived,
- User can select which party perspective to follow,
- Different names systems are supported,
- Enhanced stability in recognized concepts by separating name assignment and rank from concept.

Plant Taxa

- Name
- (Reference)
- Concept
- Status
- Correlation
- Lineage
- Usage
- Party

State of Taxon Concept Development

- 1. TDWG, IOPI, & SEEK
- 2. VegBank
- 3. Collaborators
- NatureServe Biotics4
- USDA PLANTS & ITIS

VegBank taxon data content

Prototype populated with USDA PLANTS lists and synonyms = weak concepts.

Contract with NatureServe and John Kartesz

- Develop reference-based concepts for 14000 by July 2004 of the ~32000 vascular plant taxa at species level and below
- List of unambiguous taxa (~6000?)
- Treatment of most ambiguous taxa
- Demonstration mapping to FNA
- A few demosntration groups in depth

Concept workbench

 Concept workbench for both plant concepts and community concepts is planned.

The VegBank ERD

- Available at <u>http://vegbank.org</u>
- Click tables for data dictionary and constrained vocabulary

The data dictionary provides critical information such as field types, field definitions, and constrained vocabularies.

VegBank data dictionary

Table:plot

This table stores general, constant information about the a given plot

<u>field name</u>	nulls	<u>type</u>	key	references	<u>list</u>	<u>field</u> notes	field definition
<u>PLOT ID</u>	yes	serial	PK	n/a	no	Primary key for plot	Database generated identifier assigned to each unique plot.
authorPlotCode	no	varchar (30)	n/a	n/a	no	n/a	Author's Plot number/code, or the original plot number if taken from literature.
reference ID	yes	Integer	FK	<u>reference.</u> reference II	200	Foreign key into the reference table	Link to the source reference from which this plot record was taken
PARENT ID	yes	Integer	FK	<u>plot.</u> PLOT ID	no	Recursive foreign key	Link to the parent plot when plot is nested within another plot.
<u>realLatitude</u>	yes	Float	n/a	n/a	no	n/a	Latitude of the plot origin in degrees and decimals, datum =WGS84
<u>realLongitude</u>	yes	Float	n/a	n/a	no	n/a	Longitude of the plot origin in degrees and decimals, datum = WGS84
locationAccuracy	yes	Float	n/a	n/a	no	n/a	Estimated accuracy of the location of the plot. Plot origin has a 95% or greater probability of being within this many meters of the reported location.
confidentialityStatus	ino	Integer	n/a	n/a	closed; See values 🕶	closed list, default=0	Are the data to be considered confidential? 0=no, 1= 1km radius, 2=10km radius, 3=100km radius, 4=location embargo, 5=public embargo on all plot data, 6=full embargo on all plot data. This applies also to region.

Example plot metadata

- Project attributes
- Plot parties
- Observation date
- Cover & stratum methods
- Plot selection
- Plot layout
- Site data
- Geographic data

Plot

- Place
- Named Place

Observation

Project

- Disturbance Obs
- Soil Obs
- Graphic
- Observation Synonym
- Cover method

Taxon Observation

- Importance values
- Author name

Taxon Interpretation

- Which taxon
- Who decided and why
- Stem or collective
- Voucher information

Stems & Strata

- Stratum method
- Stratum type
- Stratum
- Stratum comp.
- Taxon observ.
- Stem count
- Stem location

Interpretation continued

Plants

- Taxon Interpretation
- Taxon Alt
- Communities
- Class
- Interpretation

Problematic taxa of ecological datasets

- Carex sp.
- Crustose lichen
- Hairy sedge #6.
- Sporobolus sp. #1
- Picea glauca engelmannii complex
- Potentilla simplex or P. canadensis
- Carya ovata sec. Gleason 1952

Party

- Project Contr.
- Obs Contr.
- Role
- Address
- Telephone

References

Utilities

- User defined
- Notes
- Revisions

Intellectual Property issues

- Rare species
- Private lands
- Working datasets not yet complete
- Ongoing research
- Citation
- Annotation

Connectivity & Collaboration

- Loaders for popular plot databases
- Data exchange standards for plots
- Data exchange standards for taxa
- Refresh activities among VegBank, Biotics, and ITIS/PLANTS.
- Distributed VegBank systems
- Deep links into VegBank

Possible VegBank nodes

- US ESA
- New Zealand
- Canada
- Amazon collaboration
- Europe
- South Africa

Tools for semantic mediation & data discovery: Science Environment for Ecological Knowledge

To improve how researchers can

- 1) gain global access to ecological data and information,
- 2) rapidly locate and utilize distributed computational services, and
- 3) capture, reproduce, and extend the analysis process itself.

The SEEK project

- Standard data structures.
- Public data archives (deposit, withdraw, cite).
- Standard exchange formats.
- Standard protocols.
- Tools for semantic mediation & data discovery.